https://brown-csci1660.github.io

CS1660: Intro to Computer Systems Security Spring 2025

Lecture 8: Authentication

Co-Instructor: Nikos Triandopoulos

February 20, 2025

CS1660: Announcements

- Course updates
 - Project 1 is due today let us know if you have any issues (need extension, etc.)
 - Homework 1 is due in a week from today (Thu, Feb 27)
 - Project 2, new dates: Out Feb 25 Due Mar 11
 - Where we are
 - Part I: Crypto wrap up today, transitioning to Web security...
 - Part II: Web
 - Part III: OS
 - Part IV: Network
 - Part V: Extras

Today

- Cryptography
 - Wrap up
- Authentication
 - User
 - System
 - Data

Crypto recap through Discrepancies...

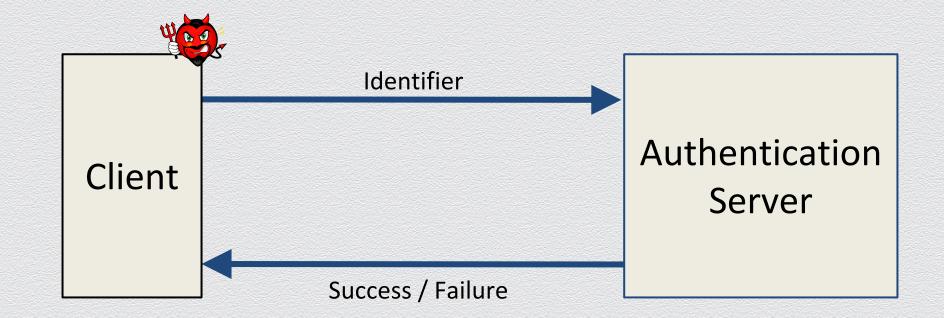
Discrepancies

- Security Vs. cryptography
- Guarantees Vs. threat model
- Confidentiality Vs. integrity
- Prevention Vs. detection
- Old Vs. modern cryptography
- Perfect Vs. computational security
- Modelled Vs. practical attacker
- Crypto Vs. non-crypto security
- Truly Vs. pseudo random
- Secret Vs. public

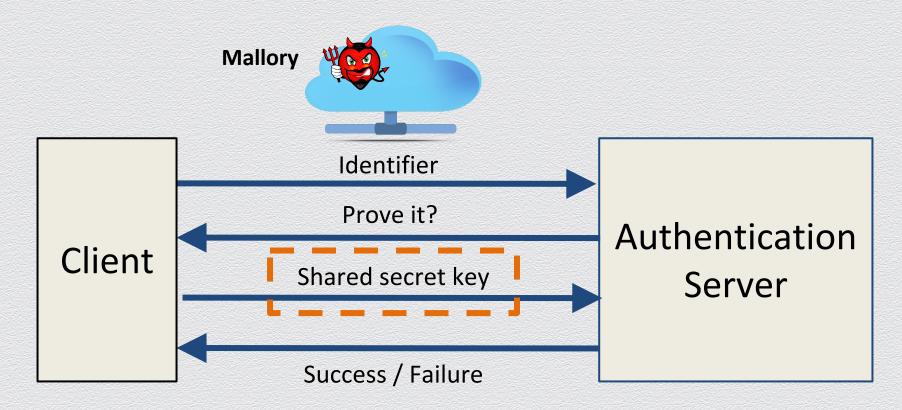
- Theory Vs. practice
- Ideal model Vs. implementation
- Open Vs. closed design
- Symmetric Vs. asymmetric crypto
- Block Vs. all-length designs
- Data Vs. user authentication
- Set-up Vs. real-world assumptions
- Good hygiene Vs. arbitrary practices
- Random Vs. non-random

Authentication protocols

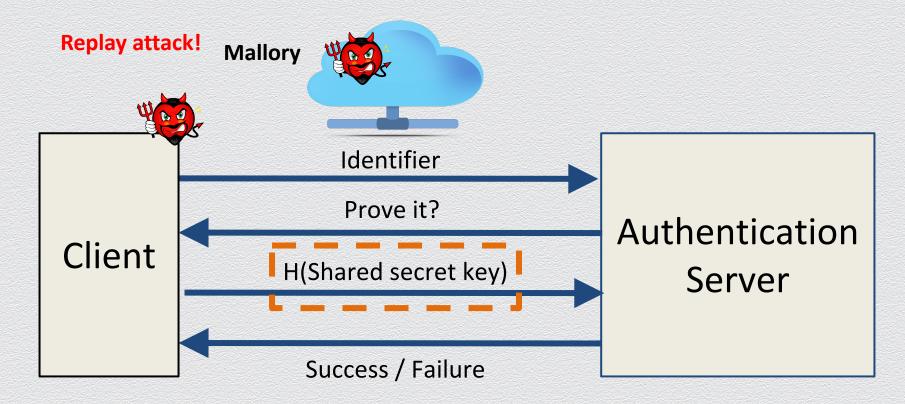
How to authenticate two systems?



But...



Even better method...



Challenge-response

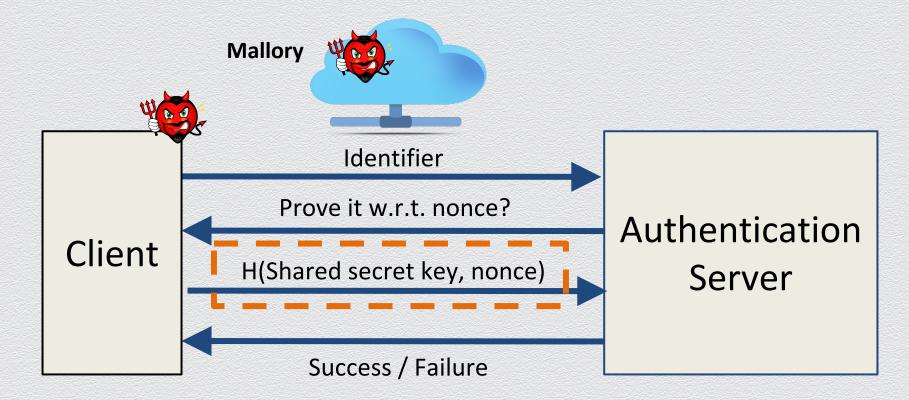
• Use **challenge-response**, to prevent replay attack

- Goal is to avoid the reuse of the same credential
- Suppose Client wants to authenticate Server
 - Challenge sent from Server to Client
- Challenge is chosen so that...
 - Replay is not possible
 - Only Client can provide the correct Response
 - Server can verify the response

Nonces

- To ensure "freshness", can employ a nonce
 - Nonce == number used once
- What to use for nonces?
 - A unique random string
- What should the Client do with the nonce?
 - Transform the nonce using the shared secret
- How can the Server verify the response?
 - Server knows the shared secret and the nonce, so can check if the response is correct

Challenge-Response authentication method



Authentication protocols

Challenge response mainly relies on nonce

What if nonce wasn't random?

• Harder to authenticate humans, more on that later...

Summary of message-authentication crypto tools

	Hash (SHA2-256)	MAC	Digital signature
Integrity	Yes	Yes	Yes
Authentication	No	Yes	Yes
Non-repudiation	No	No	Yes
Crypto system	None	Symmetric (AES)	Asymmetric (e.g., RSA)

Entropy

Amount of uncertainty in a situation

- Fair Coin Flip
 - Maximum uncertainty
- Biased Coin Flip
 - More bias \rightarrow Less uncertainty

Entropy (cont.)

- Computers need a source of uncertainty (entropy) to generate random numbers.
 - Cryptographic keys.
 - Protocols that need coin flips.
- Which are sources of entropy in a computer?
 - Mouse and keyboard movements or thermal noise of processor.
 - Unix like operating systems use dev/random and dev/urandom as randomness collector

Random numbers in practice

We need random numbers but...

"Anyone who considers arithmetical methods of producing random numbers is, of course, in a state of sin." - John von Neumann

Bootup state is predictable and entropy from the environment may be limited:

- Temperature is relatively stable
- Oftentimes the mouse/keyboard motions are predictable
- Routers often use network traffic
 - Eavesdroppers.
- Electromagnetic noise from an antenna outside of a building
- Radioactive decay of a 'pellet' of uranium
- Lava lamps...

Cloudflare company uses lava lamps as an entropy source

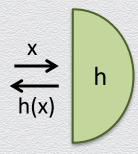
Provable security: Idealized models

- challenge in proving security of scheme S that employs scheme S'
 - no reasonable assumption on S' or \mathcal{A} can provide a security proof for S
- naïve approach: look for other schemes or use scheme S (if S' looks "secure")
- middle-ground approach: fully rigorous proof Vs. heuristic proofs
 - ${\ensuremath{\bullet}}$ employ idealized models that impose assumptions on S', ${\ensuremath{\mathcal{A}}}$
 - formally prove security of S in this idealized model
 - better than nothing...
- <u>canonical example</u>: employ the random-oracle model when using hashing
 - a cryptographic hash function h is treated as a truly random function

The random-oracle model

treats a cryptographic hash function h as a "black box" realizing a random function

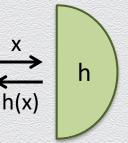
- models h as a "secret service" that is publicly available for querying
 - anyone can provide input x and get output h(x)
 - nobody knows the exact functionality of the "box"
 - queries are assumed to be private
- interpretation of internal processing



- if query x is new, then record and return a random value h(x) in the hash range
- otherwise, answer consistently with previous queries on x

Using a random oracle h: Properties

- models h as a "secret service" that is publicly available for querying
 - black-box access: information leaks only via its API
 - consistent & private querying
 - random hashing
- in proofs by reduction (reduction \mathcal{A}' using adversary \mathcal{A})
 - probability is taken (also) over random choice of uniform h
 - ${\ensuremath{\bullet}}$ in simulating oracle h (accessed by ${\mathcal A}$) ${\mathcal A}'$ can exploit the above properties
 - if x has not been queried before, h(x) is uniform
 - ${\ensuremath{\bullet}}$ if ${\ensuremath{\mathcal{A}}}$ queries h on x, ${\ensuremath{\mathcal{A}}}'$ learns x
 - \mathcal{A}' can select answer h(x) to query x as long as it's uniform

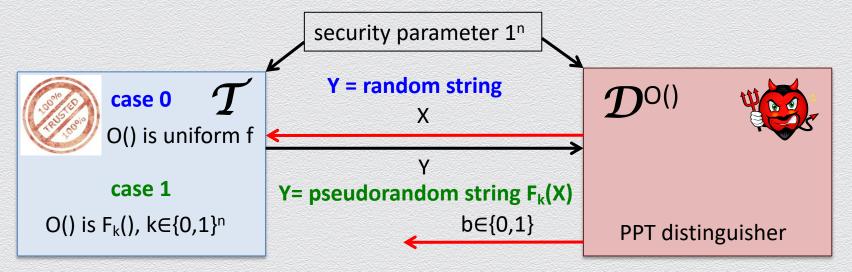


(cf. PRG value G(x))
(extractability)

(programmability)

Recall: PRF – security

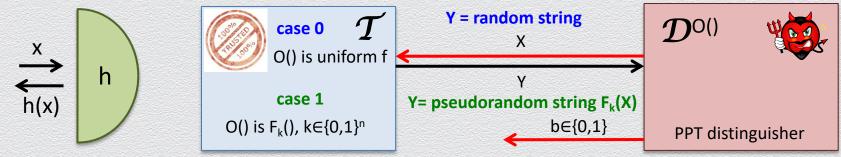
b = 0 when \mathcal{D} thinks that its oracle is f() **b** = 1 when \mathcal{D} thinks that its oracle is F_k()



 ${\mathcal D}$ behaves the same

 $|\Pr[\mathcal{D}^{F(k, \cdot)}(1^n) = 1] - \Pr[\mathcal{D}^{f()}(1^n) = 1]| \le \operatorname{negl}(n) \quad \text{no matter what}$ its oracle is!

Random-oracle model Vs. PRF



- random-oracle model
 - models publicly-known & deterministic cryptographic hashing
 - used as black box in constructions (& analysis)
 - in practice, instantiated by a concrete scheme
- PRF
 - models keyed functions that produce pseudorandom values if keys are secret
 - oracle access to a uniform f is used as a means to define security of PRFs
 - PRFs are generally not random oracles

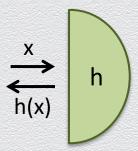
Power of random oracles

consider a random oracle h

- h can be used as a PRG (assuming h expands its input)
 - $| Pr[D(h(s)) = 1] Pr[D(r) = 1] | \le negl(n)$
 - querying for h(s) happens with negligible probability
- h is a CR hash function (assuming h compressed its input)

why?

- h can provide a PRF (assuming inputs and outputs of 2n and n, respectively)
 - $F_k(x) = h(k | |x)$
 - $| \Pr[D^{h(),F(k,)}(1^n) = 1] \Pr[D^{h(),f()}(1^n) = 1] | \le negl(n)$
 - why?

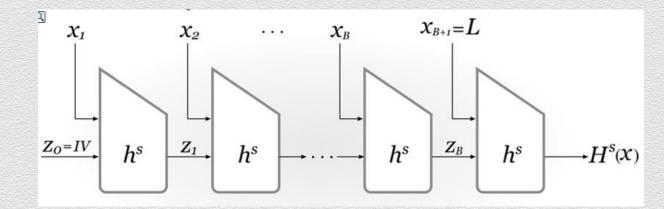


Random-oracle methodology

- 1. design & analyze using random oracle h; 2. instantiate h with specific function h'
- how sound is such an approach? on-going debate in cryptographic community
- pros (proof in random-oracle model better than no proof at all)
 - leads to significantly more efficient (thus practical) schemes
 - design is sound, subject to limitations in instantiating h to h'
 - at present, only contrived attacks against schemes proved in this model are known
- cons (proofs in the standard model are preferable)
 - random oracles may not exist (cannot deterministically realize random functions)
 - real-life As see the code of h' (e.g., may find a shortcut for some hash values)
 - can construct scheme S, s.t. S is proven secure using h, but is insecure using h'
 - note: "h' is CR" Vs. "h' is a random oracle"

Constructing hash functions in practice

typically, using the Merkle-Damgård transform



- (this precludes practical schemes being random oracles!)
- reduces problem to design of CR compression functions
- generic PRF-based compression schemes exist

The Davies-Meyer scheme

- assume PRF w/ key length n & block length l
- define h: $\{0,1\}^{n+l} \rightarrow \{0,1\}^l$ as $h(\mathbf{k} \mid \mathbf{x}) = \mathbf{F}_{\mathbf{k}}(\mathbf{x}) \operatorname{XOR} \mathbf{x}$
- h is CR, if F is an ideal cipher
 - idealized model that treats a PRF as a random keyed permutation
 - stronger than random oracle
 - some known block ciphers

 $k \rightarrow F \rightarrow h(k, x)$

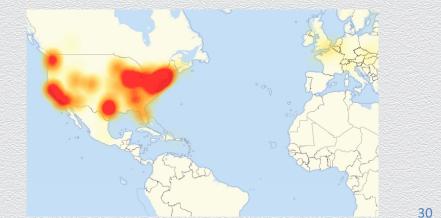
e.g., DES and triple-DES, are known not to be ideal ciphers!

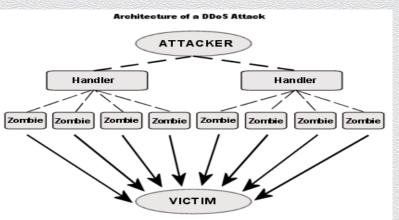
The Dyn DDoS attack

It's unfair! – I had no class but couldn't watch my Netflix series!

On October 21, 2016, a large-scale cyber was launched

- it affected globally the entire Internet but particularly hit U.S. east coast
- during most of the day, no one could access a long list of major Internet platforms and services, e.g., Netflix, CNN, Airbnb, PayPal, Zillow, ...
- this was a Distributed Denial-of-Service (DDoS) attack





DoS: A threat (mainly) against availability

Which main security property does a Denial-of-Service (DoS) attack attempt to defeat?

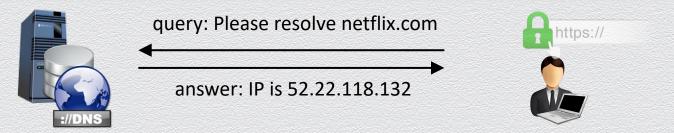
- availability; a user is denied access to authorized services or data
 - availability is concerned with preserving authorized access to assets
 - a DoS attack aims against this property; its name itself implies its main goal
- integrity & confidentiality; services or data are modified or accessed by an unauthorized user
 - elements of a DoS attack may include breaching the integrity or confidentiality of a system
 - but the end goal is disruption of a service or data flow; not the manipulation, fabrication or interception of data and services

DNS

The Domain Name Service (DNS) protocol

Resolving domain names to IP addresses

- when you type a URL in your Web browser, its IP address must be found
 - e.g., domain name "netflix.com" has IP address "52.22.118.132"
 - larger websites have multiple IP responses for redundancy to distributing load
- at the heart of Internet addressing is a protocol called DNS
 - a database translating Internet names to addresses



DNS name resolution is a critical asset – a target itself!

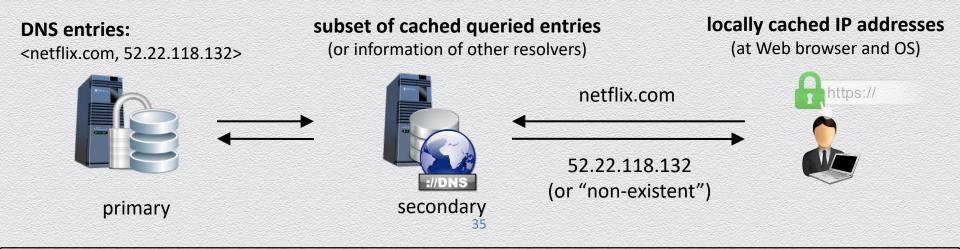
What main security properties must be preserved in such an important service?

- all properties in CIA triad are relevant!
- resolving domain names to IP addresses is a service that
 - must critically be available during all times availability
 - or else your browser does not know how to connect to Netflix...
 - must critically be trustworthy integrity
 - or else connections to malicious sites may occur (e.g., DNS-spoofing attacks)
 - must also protect database entries that are not queried confidentiality
 - or else an attacker may find out about the structure of a target organization (e.g., zone-enumeration attacks)

Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers

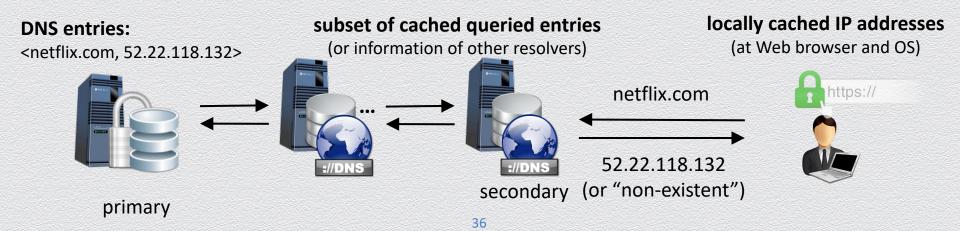
- application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed
- recursive DNS servers: query other resolvers and cache recent results



Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers

- application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed
- recursive DNS servers: query other resolvers and cache recent results
- root name servers: refer to appropriate TLD (top-level domain) server
- TLD servers: control TLD zones such as .com, .org, .net, etc.



Recursive name resolution: flexibility

Infrastructure allows for different configurations

- authoritative-only servers: answer queries on zones they are responsible for
 - fast resolution, no forwarding, no cache
- caching / forwarding servers: answer queries on any public domain name
 - recursive search / request forwarding, caching for speed, first-hop resolvers
- primary / secondary servers: authoritative servers replicating DNS data of their domains
- public / private servers: control access to protected resources within an organization

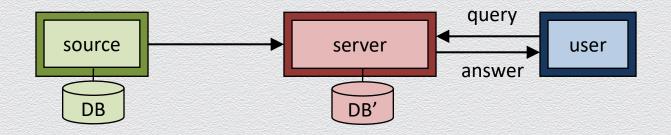
Recursive name resolution: benefits

Why DNS uses non-authoritative name servers (that is, recursive resolution)?

- for more scalability & locality
 - high query loads can saturate the response capacity of primary servers
 - secondary do not have to store large volumes of DNS entries
 - cached recently queried domain names speed up searches due to locality of queries
- for added security / locality / scalability alone not quite
 - e.g., non-authoritative name servers are untrusted and thus possibly compromised

DNS integrity: Protocols DNSSEC & NSEC

DNS as a (distributed) database-as-a-service



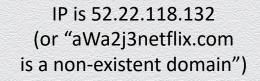
DNS entries: <netflix.com, 52.22.118.132>

"primary" name server

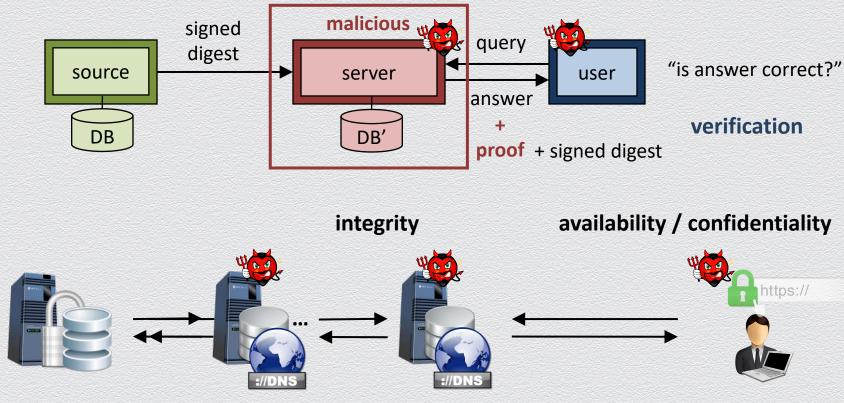
subset of cached queried entries

(or information of other resolvers)

please resolve netflix.com



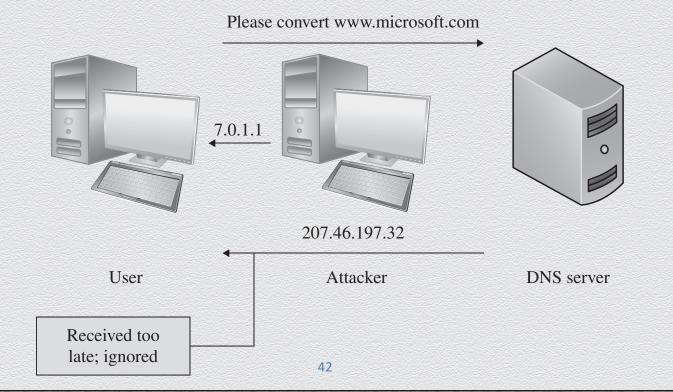
A critical asset prone to attacks



41

DNS spoofing (or cache poisoning)

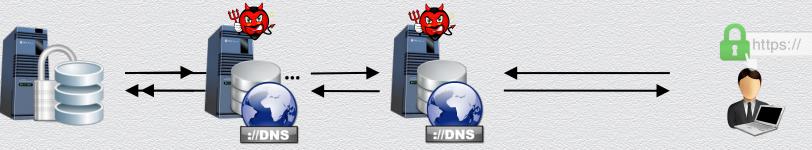
The attacker acts as the DNS server in order to redirect the user to malicious sites



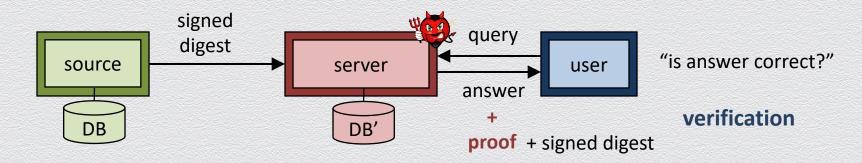
DNSSEC & NSEC

Security extension of DNS protocol to protect integrity of DNS data

- correct resolution, origin authentication, authenticated denial of existence
- specifications made by Internet Engineering Task Force (IETF) via RFCs
 - an RFC (request for comments) is a suggested solution under peer review
- challenges: backward-compatible, simplicity, confidentiality, who signs
 - NSEC (next secure record): extension that provides proofs of denial of existence



DNSSEC & NSEC: core idea



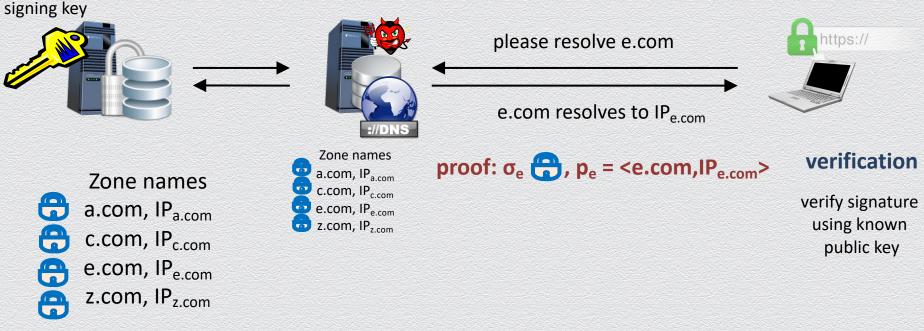
DNSSEC protocol: each DNS entry is pre-signed by primary name server

NSEC protocol:

- domain names are lexicographically ordered and then each pair of neighboring existing domain names is pre-signed by the primary name server
- non-existing names, e.g., aWa2j3netflix.com are proved by providing this pair "containing" missed query name, e.g., <awa.com, awb.com>

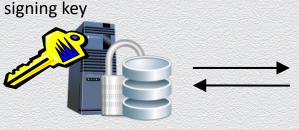
DNSSEC: example

Each entry <domain name, IP address> in the database is individually signed by a primary DNS server and uploaded to secondary DNS servers in signed form

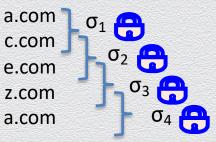


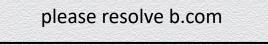
NSEC: example

Additionally, pairs of consecutive (in alphabetical order) domain names are individually signed by a primary DNS server and uploaded to secondary DNS servers in signed form



Zone names





domain name b.com doesn't exist

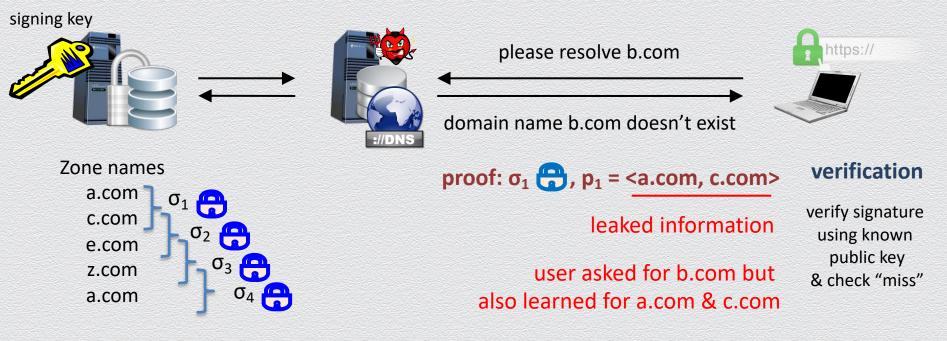
proof: $\sigma_1 \bigoplus$, $p_1 = <a.com, c.com>$

verification

verify signature using known public key & check "miss"

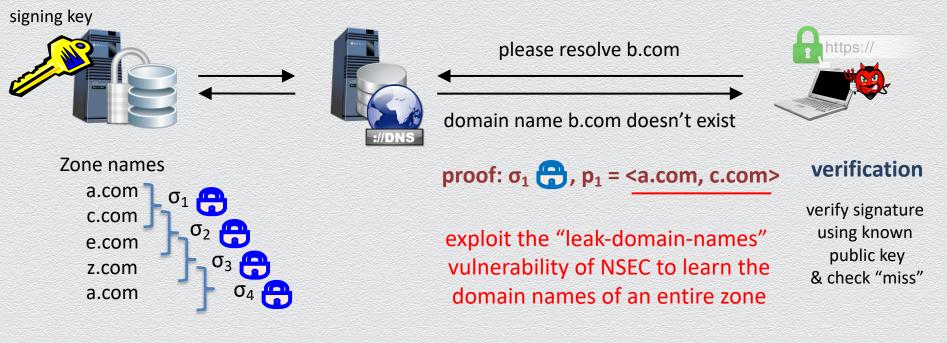
NSEC vulnerability: Protocols NSEC3 & NSEC5

Proofs of non-existing names leak information about other unknown domain names



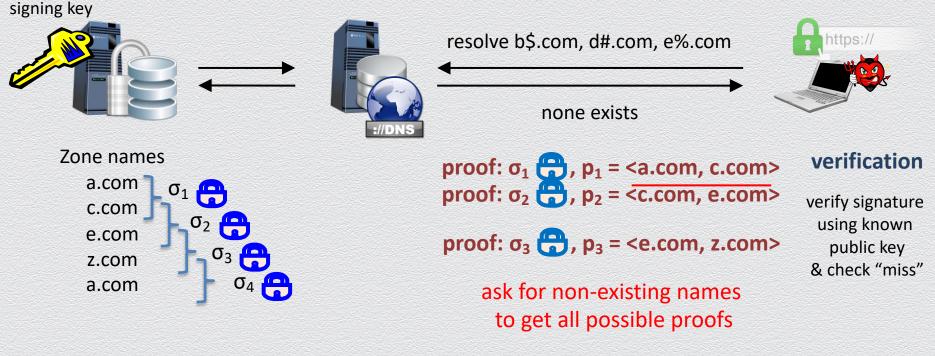
Zone enumeration attack: Main idea

An attacker can simply act as a "querier" to learn target organization's network structure!



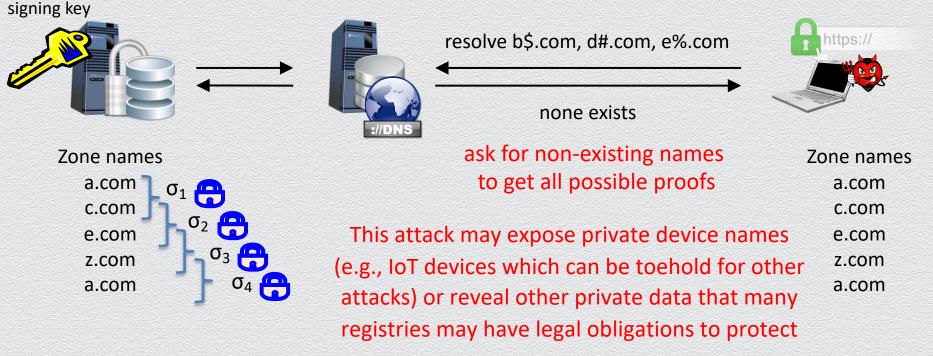
Zone enumeration attack: Example

An attacker can simply act as a "querier" to learn target organization's network structure!

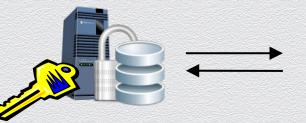


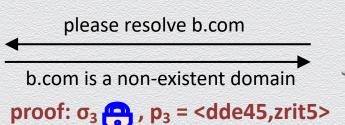
Zone enumeration attack: Result

An attacker can simply act as a "querier" to learn target organization's network structure!



NSEC3: NSEC in the hash domain



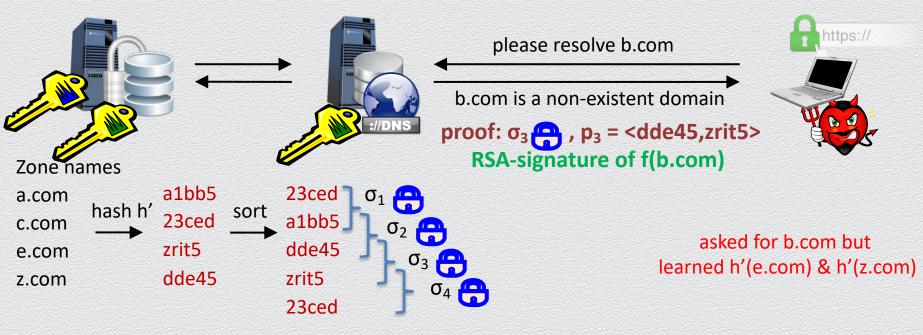


Zone names

asked for b.com but learned h(e.com) & h(z.com)

h(b.com) = ntwo4 e.g., h is SHA-256

NSEC5: A secure solution



h'(x) = h(RSA-Sign(, , f(x)))

h'(b.com) = ntwo4

- h: as in NSEC3
- f: "message transformation" hash

The RSA algorithm

The RSA algorithm (for encryption)

General case

Setup (run by a given user)

- $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, with \mathbf{p} and \mathbf{q} primes
- **e** relatively prime to $\phi(n) = (\mathbf{p} 1)(\mathbf{q} 1)$
- **d** inverse of **e** in $Z_{\Phi(n)}$

Keys

- public key is $\mathbf{K}_{\mathbf{PK}} = (\mathbf{n}, \mathbf{e})$
- private key is $\mathbf{K}_{SK} = \mathbf{d}$

Encryption

C = M^e mod n for plaintext M in Z_n

Decryption

• $M = C^d \mod n$

Example

Setup

•
$$e = 5, \phi(n) = 6 \cdot 16 = 96$$

d = 77

Keys

- public key is (119, 5)
- private key is 77

Encryption

- C = 19⁵ mod 119 = 66 for M = 19 in Z₁₁₉ Decryption
- M = 66⁷⁷ mod 119 = 19

Another complete example

• $\phi(\mathbf{n}) = 4 \cdot 10 = 40$

• e = 3, d = 27 (3.27 = 81 = 2.40 + 1)

- Encryption
 - **C** = **M**³ mod 55 for **M** in **Z**₅₅
- Decryption
- ♦ M = C²⁷ mod 55

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
C	39								48		24			43		34		16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53							44	45	41	38	42	4	40	46	28	47	54

Correctness of RSA

Given

Setup

- $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, with \mathbf{p} and \mathbf{q} primes
- e relatively prime to $\phi(n) = (p 1)(q 1)$ Use (1) and apply (2) for prime p
- **d** inverse of **e** in $Z_{\phi(n)}$ (1)

Encryption

- C = M^e mod n for plaintext M in Z_n
 Decryption
 - ♦ M = C^d mod n

Fermat's Little Theorem (2)

for prime p, non-zero x: x^{p-1} mod p = 1

Analysis

Need to show

- $M^{ed} = M \mod p \cdot q$
- $M^{ed} = M^{ed-1}M = (M^{p-1})^{h(q-1)}M$
- M^{ed} = 1^{h(q-1)} M mod p = M mod p

Similarly (w.r.t. prime q)

• M^{ed} = M mod q

Thus, since p, q are co-primes

• $M^{ed} = M \mod p \cdot q$

A useful symmetry

[1] RSA setting

- modulo $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, p & q are primes, public & private keys (e,d): $\mathbf{d} \cdot \mathbf{e} = 1 \mod (\mathbf{p}-1)(\mathbf{q}-1)$ [2] RSA operations involve exponentiations, thus they are interchangeable
- ♦ C = M^e mod n (encryption of plaintext **M** in Z_n)
- Μ = C^d mod **n** (decryption of ciphertext C in Z_n)
- Indeed, their order of execution does not matter: $(M^e)^d = (M^d)^e \mod n$
- [3] RSA operations involve exponents that "cancel out", thus they are complementary
- x^{(p-1)(q-1)} mod n = 1

Indeed, they invert each other:

(Euler's Theorem)

- $= (M^d)^e = M^{ed} = M^{k(p-1)(q-1)+1} \mod n$ (M^e)^d
 - $= (M^{(p-1)(q-1)})^k \cdot M = 1^k \cdot M = M \mod n$

Signing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

core property: M^{ed} = M mod p · q for any message M in Z_n

RSA cryptosystem lends itself to a signature scheme

- 'reverse' use of keys is possible : (M^d)^e = M mod p · q
- signing algorithm Sign(M,d,n): $\sigma = M^d \mod n$ for message M in Z_n
- verifying algorithm Vrfy(σ,M,e,n): return M == σ^e mod n

The RSA algorithm (for signing)

General case

Setup (run by a given user)

- $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, with \mathbf{p} and \mathbf{q} primes
- **e** relatively prime to $\phi(n) = (\mathbf{p} 1)(\mathbf{q} 1)$
- **d** inverse of **e** in $Z_{\phi(n)}$

Keys (same as in encryption)

- public key is $\mathbf{K}_{\mathbf{PK}} = (\mathbf{n}, \mathbf{e})$
- private key is $\mathbf{K}_{SK} = \mathbf{d}$

Sign

- $\sigma = M^d \mod n$ for message M in Z_n Verify
 - Check if $\mathbf{M} = \boldsymbol{\sigma}^{\mathbf{e}} \mod \mathbf{n}$

Example

Setup

•
$$e = 5, \phi(n) = 6 \cdot 16 = 96$$

• d = 77

Keys

- public key is (119, 5)
- private key is 77

Signing

• $\sigma = 66^{77} \mod 119 = 19$ for **M** = 66 in **Z**₁₁₉

Verification

Check if M = 19⁵ mod 119 = 66

Digital signatures & hashing

Very often digital signatures are used with hash functions

• the hash of a message is signed, instead of the message itself

Signing message M

- let h be a cryptographic hash function, assume RSA setting (n, d, e)
- compute signature σ on message M as: $\sigma = h(M)^d \mod n$
- send σ, M

Verifying signature o

- use public key (e, n) to compute (candidate) hash value H = σ^{e} mod n
- if H = h(M) output ACCEPT, else output REJECT

Security of RSA

Based on difficulty of **factoring** large numbers (into large primes), i.e., $n = p \cdot q$ into p, q

- note that for RSA to be secure, both p and q must be large primes
- widely believed to hold true
 - since 1978, subject of extensive cryptanalysis without any serious flaws found
 - best known algorithm takes exponential time in security parameter (key length |n|)
- how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

 estimated computing/memory resources needed to factor an RSA number within one year

l	Length (bits)	PCs	Memory		
	430	1	128MB		
	760	215,000	4GB		
	1,020	342×10 ⁶	170GB		
	1,620	1.6×10 ¹⁵	120TB		

RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n|)

- known in the form RSA-`key bit length' expressed in bits or decimal digits
- provide empirical evidence/confidence on strength of specific RSA instantiations

Known attacks

- RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines
 - 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. II, 4 500MHz Digital/Compaq
- RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)
- RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)
- RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges

• prizes for factoring RSA-**1024**, RSA-**2048** is \$100K, \$200K – estimated at 800K, 20B Mips-centuries

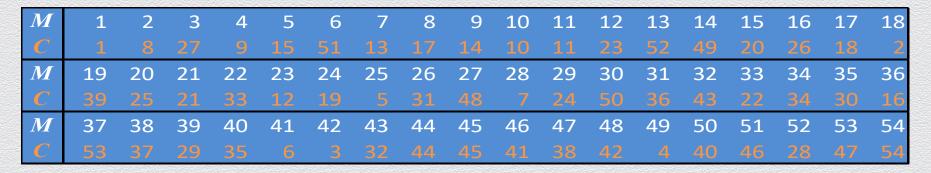
Deriving an RSA key pair

- public key is pair of integers (e,n), secret key is (d, n) or d
- the value of n should be quite large, a product of two large primes, p and q
- often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)
 - but 2048-bit keys are becoming a standard requirement nowadays
- the larger the value of n the harder to factor to infer p and q
 - but also the slower to process messages
- a relatively large integer e is chosen
 - e.g., by choosing e as a prime that is larger than both (p 1) and (q 1)
 - why?
- d is chosen s.t. $e \cdot d = 1 \mod (p 1)(q 1)$
 - how?

Discussion on RSA

• Assume $\mathbf{p} = 5$, $\mathbf{q} = 11$, $\mathbf{n} = 5 \cdot 11 = 55$, $\mathbf{\phi}(\mathbf{n}) = 40$, $\mathbf{e} = 3$, $\mathbf{d} = 27$

- why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
- recall that the ciphertext is C = M³ mod 55 for M in Z₅₅



Discussion on RSA

- Assume $\mathbf{p} = 5$, $\mathbf{q} = 11$, $\mathbf{n} = 5 \cdot 11 = 55$, $\mathbf{\phi}(\mathbf{n}) = 40$, $\mathbf{e} = 3$, $\mathbf{d} = 27$
 - why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
 - recall that the ciphertext is C = M³ mod 55 for M in Z₅₅
- ◆ Assume n = 20434394384355534343545428943483434356091 = p · q
 - can e be the number 4343253453434536?
- Are there problems with applying RSA in practice?
 - what other algorithms are required to be available to the user?
- Are there problem with respect to RSA security?
 - does it satisfy CPA (advanced) security?

Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

- Main issues
 - representation of integers of arbitrarily large size; and
 - arithmetic operations on them, namely computing modular powers
- Required algorithms (at setup)
 - generation of random numbers of a given number of bits (to compute candidates **p**, **q**)
 - primality testing (to check that candidates p, q are prime)
 - computation of the GCD (to verify that **e** and $\phi(\mathbf{n})$ are relatively prime)
 - computation of the multiplicative inverse (to compute d from e)

Pseudo-primality testing

Testing whether a number is prime (primality testing) is a difficult problem

An integer $n \ge 2$ is said to be a base-**x** pseudo-prime if

- xⁿ⁻¹ mod n = 1 (Fermat's little theorem)
- Composite base-**x** pseudo-primes are rare
 - a random 100-bit integer is a composite base-2 pseudo-prime with probability less than 10⁻¹³
 - the smallest composite base-2 pseudo-prime is 341
- Base-x pseudo-primality testing for an integer n
 - check whether xⁿ⁻¹ mod n = 1
 - can be performed efficiently with the repeated squaring algorithm

Security properties

- Plain RSA is deterministic
 - why is this a problem?
- Plain RSA is also homomorphic
 - what does this mean?
 - multiply ciphertexts to get ciphertext of multiplication!
 - [(m₁)^e mod N][(m₂)^e mod N] = (m₁m₂)^e mod N
 - however, not additively homomorphic

Real-world usage of RSA

Randomized RSA

- to encrypt message M under an RSA public key (e,n), generate a new random session AES key K, compute the ciphertext as [K^e mod n, AES_K(M)]
- prevents an adversary distinguishing two encryptions of the same M since K is chosen at random every time encryption takes place
- Optimal Asymmetric Encryption Padding (OAEP)
 - roughly, to encrypt M, choose random r, encode M as M' = [X = M ⊕ H₁(r), Y= r ⊕ H₂(X)] where H₁ and H₂ are cryptographic hash functions, then encrypt it as (M') ^e mod n

Summary of message-authentication crypto tools

	Hash (SHA2-256)	MAC	Digital signature
Integrity	Yes	Yes	Yes
Authentication	No	Yes	Yes
Non-repudiation	No	No	Yes
Crypto system	None	Symmetric (AES)	Asymmetric (e.g., RSA)